
International Journal of Information Technology and Knowledge Management
January June 2009, Volume 2, No. 1, pp. 33-35

* National Institute of Technology, Kurukshetra-136119 INDIA,
E-mail: jitenderchhabra@rediffmail.com, rsibhatia@yahoo.co.in,
vpsingh72@yahoo.com

VALIDATION OF OVERALL PROGRAM WEAKNESS MEASURE

Jitender Kumar Chhabra, Ravinder Singh Bhatia & V. P. Singh

The measurement of complexity of software has always been a demanding area for software industry and key research area
for the researchers of software engineering. But complexity measurement alone is never sufficient and acceptable until it has
been validated on basis of some acceptable frameworks. One of the most widely discussed and accepted framework was
proposed by Briand et al and is being used very frequently to validate various software metrics. The overall program weakness
is one structural complexity measure which has been quite useful indicator of the complexity. This paper validates this
measure using the Briand’s framework. The results of this study show that the overall program weakness metrics satisfies all
properties and parameters required by the formal evaluation framework. Thus value of overall program weakness measure
can be used by software managers as a tool to control the complexity.

1. WEAKNESS OF A MODULE

The module weakness has been defined in [1] using the
average number of live variables (LV) and average life of
variables (β), as:

WM = LV* β
Average number of live variables and average life of
variables can be found using some automated tools [2, 3].
The concept of module weakness was extended to measure
the program weakness by finding average of weaknesses of
all modules. But there is a significant difference between
computing module weakness and program weakness. The
program weakness cannot be computed by just averaging
the module weaknesses of all modules. An initial definition
of program weakness was proposed as [1]

1

m

i

i

WP WM m
=

=

∑ (1)

where WM
i
: weakness of ith module.

WP : weakness of the program

m : Total number of modules in the program.

But this definition lacked in considering the module
coupling while shifting from module to program weakness.
As per this definition, two different programs had same
weakness if both have same values of module weaknesses
although one program had lot of coupling while other
program had no coupling at all, which was not acceptable.
Hence this averaging of module weaknesses is unacceptable
to compute weakness of a program.

2. OVERALL WEAKNESS OF A PROGRAM

The definition of the weakness of the program is redefined
by including the effect of the coupling among the modules
[4]. So now average weakness of a program is defined as:

1 1 1

m m n

i ij

i i j

WM CM

AWP
m

= = =

+

=
∑ ∑∑

(2)

where WM
i

: Weakness of ith module.

CMij : jth type of coupling of ith module.

m : Total number of modules.

n : Total number of types of coupling

Here j = 1 represents data coupling, j = 2 represents control
coupling, j = 3 refers to global coupling, j = 4 corresponds
to environment coupling etc.

In order to reflect overall weakness of the program, the
averaging does not help. Most of the researchers have
recommended that the complexity of the bigger system is
always aggregation of their individual complexities, and thus
the overall weakness of the program will be defined as
summation of module weaknesses along with their coupling
summation. i.e.

1 1 1

m m n

i ij

i i j

OWP WM CM
= = =

= +∑ ∑∑ (3)

3. VALIDATION OF OVERALL PROGRAM WEAKNESS MEASURE

Briand et al. developed a formal list of five properties for
evaluating software complexity metrics [5]. These properties
are used to determine the usefulness of various software
complexity measures and a good complexity measure should
satisfy most of the Briand’s properties. These properties have

�� �������	
���	
�����	��
	������	
�����
������
�
��
��
�����

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\7_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

been recommended by many eminent researchers for
evaluating their measures [6-10] and are well accepted in
the literature to evaluate the usefulness of the metrics. The
above described program weakness measure is validated
here using these five properties proposed by Briand et al.
Before applying the program weakness metric against this
framework, let us define the basic terms and properties for
complexity measures given in the framework.

System: A system S is represented as a <E, R>, where E
represents the set of elements of S, and R is a binary relation
on E (R ⊆ E × E) representing the relationships between
elements of S.

Module: For a given a system S = <E, R>, a system m
= <E

m
, R

m
> is a module of S if and only if E

m
 ⊆ E, R ⊆ E

m
 ×

E
m
 and R

m
⊆ R. A module m may be a code segment or a

subprogram.

For the purpose of evaluation of program weakness
complexity measures, E is defined as the set of modules
and R as the set of usages of modules.

Complexity: The complexity of a system S is a function
Complexity(S) that is described by Property 1 to Property 5.

Property 1 (Nonnegative): The complexity of a system
S = < E, R > is nonnegative if Complexity (S) ≥ 0.

Proof: Since program weakness is defined as average
of summation of module weakness and coupling of the
module with other modules, which are always non-negative
numbers. The coupling of a module with other modules can
be either zero or a positive number. Similarly module
weakness is computed through average life of variables and
average number of live variables and both are always
positive or zero. So, this property is well satisfied by
program weakness metric.

Property 2 (Null Value): The complexity of a system S
= < E, R> is null if R is empty i.e.

R = � ⇒ Complexity (S) = 0.

Proof: As defined above, R is a set of usages of modules
in context of program weakness. If there is no usage of any
module in the program, value of the program weakness
would be obviously zero, because in absence of modules,
the module weakness will be zero, and the coupling amongst
modules will also be zero obviously. Hence, Property 2 is
also satisfied by this measure.

Property 3 (Symmetry): The complexity of a system S
= <E, R> does not depend on the convention chosen to
represent the relationships between its elements i.e. (S =
<E, R> and S–1 = <E, R–1>) ⇒ Complexity(S) = Complexity(S–

1).

Proof: As per the definition of the program weakness
metric, its value for a program depends on the variables’
life and inter-connection among modules, but it is never

dependent on the conventions chosen to represent the usage
of the modules. In fact the representation of the usage of
the module may be different in different programming
languages, but program weakness does not get affected by
the syntax. Thus, the program weakness satisfies this
property.

Property 4 (Module Monotonicity): The complexity of
a system S = <E, R> is no less than the sum of the
complexities of any two of its modules with no relationships
in common i.e.

S = <E, R> and m
1
 = <E

m1
, R

m1
> and m

2
 = <E

m2
, R

m2
> and

m
1
 ∪ m

2
 ⊆ S and R

m1
∩ R

m2
 = �) ⇒ Complexity(S) ≥

Complexity (m
1
) + Complexity (m

2
).

Proof: This property is very important for validation of
any measure. Let us consider a program consisting of 2
modules, each having module weakness as WM

1
and WM

2
.

If there is no inter relationship between these two modules,
then there does not exist any type of coupling between these
two modules. So as per equation (3), the complexity of this
program will be (WM1 + WM2). However if the modules
have some inter-connection (which is quite common) then
the value of coupling will never be zero. Let us assume C

11
,

C
12

, C
13

, … be various types of coupling of module 1 and
C

21
, C

22
, C

23
, … are various types of coupling of module 2.

So now overall program weakness is computed using
equation (3) as

1 1 2 2
1 1

() ()
n n

j j
j j

OWP WM C WM C
= =

= + + +∑ ∑

1 2 1 2
1 1

n n

j j
j j

WM WM C C
= =

= + + +∑ ∑

Thus 1 2OWP WM WM≥ +

So the program weakness of the program having some
non-zero value of coupling will be definitely higher than a
program having no coupling. Thus Property 4 is well-
satisfied by the measure under consideration.

Property 5 (Disjoint Module Additivity): The
complexity of a system S = <E, R> composed of two disjoint
modules m

1
, m

2
, is equal to the sum of the complexities of

the two modules i.e.

(S = <E, R> and S = m
1
 ∪ m

2
, and m

1
 ∩ m

2
 = �) ⇒ Complexity

(S) = Complexity (m
1
) + Complexity (m

2
).

Proof: If two disjoint modules are combined together,
then the coupling amongst these modules will be zero due
to their disjointness. Thus as per equation (3), the program
weakness of the composed program will be

OWP = (WM
1
 + 0) + (WM

2
 + 0) = WM

1
 + WM

2

����������
��
���	���
�	��	�
��������
����	� ��

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\7_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

Thus WP is equal to summation of module weakness
of module 1 and module 2, and hence the property 5 is also
satisfied.

CONCLUSION

The overall program weakness is computed by aggregating
the module weaknesses and coupling values of all modules.
The program weakness measure is validated here using the
well known framework of Briand et al. The overall program
weakness metric is found to satisfy all five properties of
this framework. The theoretical and formal evaluation
carried out in this paper indicated that overall program
weakness is a robust and useful measure of complexity.

References

[1] Yogesh Singh, Pradeep Bhatia, “Module Weakness : A New
Measure”, ACM SIGSOFT, (July,1998), 82–82.

[2] Conte Dunsmore, Shen, “Software Engineering Metrics and
Models”, Cummings Pub. Coi. Inc. USA, (1986).

[3] Bache, Monica, “Measures of Testability as a Basis for
Quality Assurance, Software Engineering Journal, (March,
1990), 86–92.

[4] K. K. Aggarwal, Yogesh Singh, Jitender Kumar Chhabra,
“Computing Program Weakness using Module Coupling”,
ACM SIGSOFT, 27, (1), (Jan 2002), 63–66.

[5] L. C. Briand, S. Morasca, V. R. Basili, “Property-Based
Software Engineering Measurement”, IEEE Transactions
on Software Engineering, 22 (1), (Jan 1996), 68–86.

[6] S. Misra, A. K. Misra, “Evaluating Cognitive Complexity
Measure with Weyuker Properties” Proceedings of Third
IEEE International Conference on Cognitive Informatics
(ICCI2004), 103–108.

[7] S. Misra, A. K. Misra, “Evaluation and Comparison of
Cognitive Complexity Measure”, ACM SIGSOFT Software
Engineering Notes. 32, (2), (Mar 2007), 1–5.

[8] S. Misra, ‘Validating Modified Cognitive Complexity
Measure’ ACM SIGSOFT Software Engineering Notes. 32,
(3), (2007), 1–5.

[9] D. S. Kushwaha, A. K. Misra, “Robustness Analysis of
Cognitive Information Complexity Measure using
Weyuker’s Properties”. ACM SIGSOFT Software
Engineering Notes, 31, (1), (2006), 1–6.

[10] Y. Wang, “On the Informatics Laws and Deductive
Semantics of Software”, IEEE Transactions on Systems,
Man and Cybernetics. 36, (2), (2006), 161–171.

